Blow-up for a Degenerate and Singular Parabolic System with Nonlocal Sources and Absorptions

نویسندگان

  • Lixin Shi
  • Chunlai Mu
  • Furong Li
چکیده

Abstract This paper deals with the blow-up properties of the solution to the degenerate and singular parabolic system with nonlocal sources, absorptions and homogeneous Dirichlet boundary conditions. The existence of a unique classical nonnegative solution is established and the sufficient conditions for the solution to exist globally or blow up in finite time are obtained. Furthermore, under certain conditions it is proved that the blow-up set of the solution is the whole domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Blow-up for a degenerate and singular parabolic equation with nonlocal boundary condition

The purpose of this work is to deal with the blow-up behavior of the nonnegative solution to a degenerate and singular parabolic equation with nonlocal boundary condition. The conditions on the existence and non-existence of the global solution are given. Further, under some suitable hypotheses, we discuss the blow-up set and the uniform blow-up profile of the blow-up solution. c ©2016 All righ...

متن کامل

Blow-up for Degenerate and Singular Nonlinear Parabolic Systems with Nonlocal Source

Existence of a unique classical nonnegative solution is established and sufficient conditions for the solution that exists locally or blows up in finite time are obtained for the degenerate and singular parabolic system x1ut − (x1ux)x = ∫ a 0 g(v(x, t))dx, x2vt − (x2vx)x = ∫ a 0 f(u(x, t))dx in (0, a) × (0, T ), where T ≤ ∞, a ≥ 0 are constants, f , g are given functions. Furthermore, under cer...

متن کامل

Critical exponents in a doubly degenerate nonlinear parabolic system with inner absorptions

This paper deals with critical exponents for a doubly degenerate nonlinear parabolic system coupled via local sources and with inner absorptions under null Dirichlet boundary conditions in a smooth bounded domain. The author first establishes the comparison principle and local existence theorem for the above problem. Then under appropriate hypotheses, the author proves that the solution either ...

متن کامل

A note on blow-up in parabolic equations with local and localized sources

‎This note deals with the systems of parabolic equations with local and localized sources involving $n$ components‎. ‎We obtained the exponent regions‎, ‎where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data‎. ‎It is proved that different initial data can lead to different blow-up phenomena even in the same ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010